

MCA-003-020202

Seat No.

M. Sc. (Physics) (Sem. II) (CBCS) Examination April / May - 2018

CT - 6 : Atomic & Molecular Physics (Old Course)

Faculty Code: 003

Subject Code: 020202

Time : $2\frac{1}{2}$ Hours]

[Total Marks: 70

Instructions: (1) All questions are compulsory.

- (2) All questions carry equal marks.
- (3) Mathematical symbols have their usual meanings.

1 Answer any Seven:

14

- (a) Write down Schrodinger wave equation for the H atom showing dependence on the co ordinate θ only.
- (b) What do you mean by j-j coupling?
- (c) State Pauli's exclusion principle. Why, sometimes, it is termed as "equivalence principle"?
- (d) What is anomalous Zeeman effect? By which elements it can be obtained?
- (e) What do you mean by isotope effect in rotational spectra?
- (f) What are prolate and oblate symmetric top molecules?
- (g) Transition originating from the level having which J value will have the maximum intensity?
- (h) What is meant by IR region of electromagnetic spectrum? Also subdivide it.
- (i) What is klystron? In place of klystrons, which devices are used in recent times?
- (j) What is the usefulness of monochromator in IR spectrometer?

- 2 Write any Two:
 - (a) Discuss the interpretation of the results obtained 7 from Schrodinger equation for atomic degeneracy of atomic level.
 - (b) Discuss the explanation of normal Zeeman Effect on the basis of vector atom model.
 - (c) Convert the equation $\frac{\partial^2 \Psi}{\partial x^2} + \frac{\partial^2 \Psi}{\partial y^2} + \frac{\partial^2 \Psi}{\partial z^2} + \frac{8\pi m}{h^2} (E V) = 0$ in spherical coordinates and derive the equation for r, θ and φ
- **3** Answer the following questions : (ALL ARE COMPULSORY)
 - (a) What is Paschen–Back Effect? Show that in a strong magnetic field, a given spectral line will be split up into three components only, with equidistant separation of $eh/4\pi m$.
 - (b) Explain Pauli's exclusion principle with the help of exchange degeneracy.

OR

- 3 Answer the following, questions: (ALL ARE COMPULSORY)
 - (a) Discuss non-rigid rotator in detail. Compare the energy levels and spectrum of rigid and non-rigid rotators.
 - (b) Explain the interaction of radiation with rotating molecule in detail.
- 4 Write any Two:
 - (a) Draw and explain the morse curve and the energy levels of a diatomic molecule.
 - (b) Describe the salient features of microwave spectrometer.
 - (c) Explain the first order Stark effect of symmetric 7 top molecules for the transition $J = 1, K = 1 \rightarrow J = 2, K = 1.$

5 Write notes on any Two:

14

- (a) Different series in alkali spectra.
- (b) Normal modes of vibration in crystal.
- (c) IR spectrophotometer.
- (d) Diatomic vibrating rotator.